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apstRACT: We collected 180 Blue-winged Teal
(Anas discors) in September and October 2002
from Florida, US (n=100, representing the
eastern migratory corridor) and the Louisiana-
Texas, US, border (n=80, representing the west-
ern migratory corridor) and examined for blood
parasites using thin heart-blood smears. Leucocy-
tozoon simondi, Haemoproteus nettionis, and
microfilariae were found in 16, 23, and 27 birds,
respectively. Prevalence of L. simondi and H.
nettionis did not vary by migratory corridor, but
the prevalence of miicrofilariae was higher in the
western corridor (23%) than the eastern corridor
(9%). No differences in prevalence of L. simondi,
H. nettionis, and microfilariae were observed by
host age or sex. The mean density of L. simondi
and H. nettionis averaged 1.5+0.3 and 2.3+0.4
(*£SE per 3,000 erythrocytes), respectively.
Ranked abundance models for main and interac-
tive effects of corridor, age, and sex were not
statistically significant for L. simondi or H.
nettionis. Low prevalence and abundance of
hematozoa in early autumn migrants reflects the
likelihood of low exposure probabilities of Blue-
winged Teal on the breeding grounds, compared
to their congeners.

Key words: Anas discors, blood parasites,
Blue-winged Teal, Haemoproteus nettionis, Leu-
cocytozoon simondi, microfilariae.

Hematozoans in avian hosts have the
potential to cause disease (Valkiunas 2005).
Migratory avian hosts are exposed to more
hematozoan species, have higher risk of
infection than sedentary hosts (Figuerola
and Green 2000), and transport parasites
between breeding and wintering areas and
along their migratory routes (Fedynich et al.
1993; Smith and Ramey 2015). The Blue-
winged Teal (Anas discors) provides the
opportunity to examine a host-parasite sys-

tem in which the host is a common breeding
duck across the northeastern half of North
America, migrates in early autumn (begins
August), and migrates transnationally and
transcontinentally (Rohwer et al. 2002).
Blue-winged Teal primarily use an eastern
migratory corridor and a western corridor in
which those migrating along the eastern
corridor move from northeastern breeding
areas in North America to Florida, US, and
continue southward into Guyana, Colombia,
and Brazil, whereas those using the western
corridor migrate from Saskatchewan, Cana-
da, and follow the Mississippi River Valley to
the border of Texas and Louisiana, US,
ending in Mexico and Central and South
America (Bellrose 1980). Herein we quantify
prevalence and abundance of blood parasites
in Blue-winged Teal using thin blood smears
and determine if these values vary by
migratory corridor, host age, and host sex.

We collected 180 Blue-winged Teal be-
tween 21 September and 30 October 2002.
These included 100 (34 adult males, 10 adult
females, 14 juvenile males, 42 juvenile fe-
males) from Glades, Martin, Palm Beach, and
Okeechobee counties, Florida, US, represent-
ing the eastern corridor (28.35'-28.18'N,
80.49'-81.24'W), and 80 (21 adult males, 13
adult females, 21 juvenile males, 25 juvenile
females) from Jasper, Jefferson, Newton,
Orange, Sabine, and San Augustine counties
in Texas, and Beauregard, Calcasieu, Camer-
on, Sabine, and Vernon parishes in Louisiana,
representing the western corridor (29°53'—
30°12/N, 93°12/-93°56 W).
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Blue-winged Teal were collected by shot-
gun in accordance with state and federal
permits (Florida: WX02177; Louisiana:
LNHP-02-107; Texas: SPR-0602-222; US Fish
and Wildlife Service: MB0356380-0). The
study was approved by the Texas A&M
University—Kingsville, Kingsville, Texas, Insti-
tutional Animal Care and Use Committee
(Approval 2002-8-15). Definitions follow Bush
et al. (1997) where prevalence is the number
of hosts infected with a particular parasite
species divided by the number of hosts
examined (expressed as a percentage) and
density is the number of erythrocytes infected
with a particular protozoan species expressed
per the total number of erythrocytes examined
from an infected host. Mean abundance is
defined as the total number of host blood cells
infected with a particular protozoan species
divided by the number of erythrocytes exam-
ined, and this quotient was divided by total
number of hosts examined (expressed as a
proportion).

Within 10 min of bird death, heart blood
(approximately 0.1 mL) was extracted using a
pipette from which two thin smears were
made on microscope slides, air dried, fixed in
95% methanol for 1 min, and stained using
Diff-Quik® (Dade Behring, Deerfield, Illinois,
USA). To determine parasite prevalence, each
slide was scanned for 15 min (30 min per bird)
with a microscope at 1,000X magnification.
Each slide was examined for an additional 5
min at 400X magnification (10 min per bird).

Density estimation followed procedures
recommended by Godfrey et al. (1987) in
which a positive smear is viewed at 1,000
magnification and, using a Miller ocular disc,
30 replicates of 100 erythrocytes each are
counted, and the number of parasites of each
species recorded. To decrease the chance of
bias, random numbers were used to deter-
mine the order in which the slides were
counted and the distance between locations
viewed in each cardinal direction on the slide.
Although the protocols of Godfrey et al.
(1987) were developed for Haemoproteus
spp., they have been successfully applied to
Leucocytozoon spp. (Fedynich and Rhodes
1995; DeJong et al. 2001). No satisfactory

techniques are available to estimate density of
microfilariae using blood smears; consequent-
ly, only prevalence data are reported for
microfilariae. In instances  where protozoans
were found in initial prevalence screening, but
density could not be quantified (i.c., <1 per
3,000 erythrocytes counted), a value of 0.5 wag
assigned to the infected host (=0.5 parasites/
3,000 cells counted), which allows their
inclusion in summary statistics and statistica]
analyses of small samples (Clarke 1998).

Chi-square 2X2 contingency-table analysis
was used to determine if the prevalence varied
by the main effects of migratory corridor, host
age, and host sex. Abundance data were rank
transformed, and analysis of variance was used
to examine the main and interaction effects
variables of migratory corridor, host age, and
host sex. Voucher specimens of Haemoproteus
nettionis (SHSUP001579) and Leucocytozoon
stmondi (SHSUP0O01578) were deposited into
the Sam Houston State University Parasite
Collection, Huntsville, Texas, US.

Fifty-four (30%) Blue-winged Teal demon-
strated infections in blood smears. Leucocy-
tozoon simondi was found in 16 (9%) birds, H.
nettionis was found in 23 (13%) birds, and
microfilariae were found in 27 (15%) birds
(Table 1). No Plasmodium spp. were ob-
served. Multiple infections occurred in 10
Blue-winged Teal. Of these, three birds were
observed with L. simondi and microfilariae,
one bird with H. nettionis and microfilariae,
four birds with L. simondi and H. nettionis,
and two birds with L. simondi, H. nettionis,
and microfilariae.

Prevalence of L. simondi and H. nettionis
did not differ (P=0.64 and P=0.06) between
migratory corridors, whereas the prevalence
of microfilariae was higher (P=0.01) in the
western corridor (23%) than the eastern
corridor (9%). No differences in prevalence
of L. simondi, H. nettionis, or microfilariae
were observed between host ages (P=0.57,
P=0.99, P=0.47, respectively) or between host
sexes (P=0.60, P=0.50, P=0.53, respectively).

Densities of L. simondi and H. nettionis
averaged 1.5+0.3 (z+SE) per 3,000 erythro-
cytes and 2.3+0.4 per 3,000 erythrocytes,
respectively. Mean abundance of L. simondi

Tapie 1. Prevalence (%)
Haemoproteus nettionis, and micro

smears of Blue-winged Teal (Anas discors) collected in Florida

(western corridor), USA, during autumn 2002.
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i i f Leucocytozoon simondi,
d 95% confidence interval (in parentheses) o .
o ﬁl:ria by migratory corridor, host age, and host sex observed in blood

(eastern corridor) and Texas and Louisiana

Migratory corridor

Host age

Host sex

Eastern Western Juvenile

Parasite species n=100 n=80 n=102

Adult Male Female
n="78 n=90 n=90

Leucocytozoon
simondi

Haemoproteus
nettionis

Microfilaria

8 (3.5-15.2

9 (4.2-16.4

) 10 (4.4-189) 8 (3.4-14.9) 10 (45-19.2) 8 (3.2-15.4) 10 (4.7-18.1) 9 (5.2-14.0)

_22.3) 14 (7.9-23.4) 11 (5.5-19.5) 13 (8.3-18.5)
9.958) 8(2.8-15.6) 13(7.0-20.8) 13 (6.3
s )) 23 E13.9—33.2) 17 (10.0-25.3) 13 (6.3-22.3) 13 (7.1-22.1) 17 (9.6-26.0) 15 (10.1-21.1)

and H. nettionis was 0.1+<0.1 and 0.3%0.1,
respectively (Table 2). The overall analysis of
variance models for rank mean abundance of
L. simondi and H. nettionis were not signif-
icant (P=0.96_and P=0.40, respectively) and
were not further considered for main and
interaction effects variables.
Numerous studies have examined blood
parasites in North American waterfowl in
which hematozoan prevalence can differ
across various extrinsic and intrinsic variables
(Bennett et al. 1975, 1982; Greiner et al. 1975;
Loven et al. 1980). However, fewer waterfowl
studies have examined these variables within
the context of hematozoan density or abun-
dance (Fedynich et al. 1993; Dejong and
Muzzall 2000; DeJong et al. 2001). Haemo-
proteus nettionis was the most prevalent and
abundant blood protozoan found in our stud}'/.
However, both L. simondi and H. nettionis
had relatively low prevalence values (5.2—
18.5%) and abundance values (0.1-0.3 para—
sites per 3,000 erythrocytes) overall, which

Tapie 2. Abundance (mean number of individual parasit
and range of Leucocytozoon simondi and Haemoproteus ne
observed in blood smears of Blue-winged Teal (Anas discors

was reflected across migratory corridor, host
age, and host sex variables. The low levels
likely suggest a strategy by hematozoa not' to
produce high numbers of gametocytes dprrng
periods when vector populations are declining
or minimal (i.e., autumn and winter) (Allan
and Mahart 1989). Alternatively, because
Blue-winged Teal are the last to arrive on
breeding grounds and first to migrate in
autumn, the probability of infection on the
breeding grounds may be lower than for
species that arrive earlier or depart later than
Blue-winged Teal. This is evident by a
tendency for infections (as measured by
prevalence) to be lower in Blue-winged Teal »
than infections found within their congenerics
during the same season at the same geograph-
ic locations (>50 host individuals of same
species sampled; Bennett et al. 1974, 1975,
1982: Kocan et al. 1979). '
No Plasmodium spp. were detected in this
study. It is possible that they may have been
present in extremely low densities where PCR

es per 3,000 erythrocytes/hosts sarnplediSE) values
ttionis by migratory corridor, host age, and host sex
) collected in Florida (eastern corridor) and Texas

and Louisiana (western corridor), USA, during autumn 2002.

Migratory corridor

Host age Host sex

Western
£+ SE

Eastern

Parasite species £+SE

Juvenile Adult Male
£*+SE x+SE x+SE g+ SE

Female

0.2+0.1
0.2+0.1

0.1%x<0.1
0.4+0.1

Leucocytozoon simondi
Haemoproteus nettionis

0.1+0.1
0.3+0.1

0.2+0.1
0.3x0.1

0.1x<0.1
0.3+0.1

0.2%+0.1
0.3+0.1
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would have been able to detect their presence
better than microscopy (Garamszegi 2010).
Microscopy may underestimate prevalence,
and PCR focused on one group (i.e., protozoa)
may not detect another (i.e., microfilaria).
Some studies using comparative techniques
have shown both methods produced generally
similar results for haemosporidians (Valkiunas
et al. 2008; Garamszegi 2010), whereas others
found mixed results (Krams et al. 2012).
Additionally, quantification of parasitemia
can be achieved by either light microscopy
or quantitative PCR with suitably similar
results in general although qPCR can give
better resolution (Biedrzycka et al. 2015). A
combination of both techniques would be
ideal for future studies.

We characterized infections of L. simondi,
H. nettionis, and microfilaria in a migrating
population of Blue-winged Teal. Based on our
findings, the low prevalence and abundance of
hematozoa in these early autumn migrants
reflects the likelihood of low exposure prob-
abilities of Blue-winged Teal on the breeding
grounds, compared to their congeners.

We acknowledge the assistance in field
collections by Paul Gray, Ross Freeman, Bill
Freeman, Perry Smith, Trey Pearson, and
Marc Epstein, and thank the staff of the
Cameron Prairie National Wildlife Refuge, J.
D. Murphree Wildlife Management Area,
Merritt Island National Wildlife Refuge, and
T. M. Goodwin Waterfowl Management Unit.
We also thank the many landowners and lease
holders for allowing property access. This is
manuscript 16-113 of the Caesar Kleberg
Wildlife Research Institute.
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