Lake Superior State University
Lake Superior State University
 
Related Sites

 

Alum Success

Tyler graduated from Saline High School in Saline, Michigan. He has been an active leader at Anchorhouse Christian Fellowship. He completed his senior research on the use of microreactors to produce pharmaceutical precursors. He was the recipient of a GRO Fellowship for Undergraduates sponsored by the EPA. Tyler completed a summer working in Cinncinati for the EPA's National Risk Management Research Laboratory, and spent a summer in San Francisco with the American Chemical Society's Nuclear Summer School. Tyler will be pursuing his PhD at Washington State University in the Fall.

Tyler O'Dell
2010 Outstanding Graduate
Chemistry

Chemistry

LSSU chemistry students receive top awards in undergraduate student research
Scholarships at LSSU
 
Congratulations!
  • John Lehman Scholarship
    This $1000 scholarship is given to an incoming freshman majoring in chemistry, forensic chemistry or environmental chemistry.  The recipient is selected by the department faculty based on the student’s application essay, high school GPA, and demonstrated need. 
Sholarship/Internship Opportunities
  

2007/2008 Recipient is Shelby LaBuhn, Environmental Chemistry

"I'm certainly proud to be a part of Lake Superior State University. Our programs provide an excellent opportunity to gain competency in your major field through challenging and engaging courses stressing theory and application, and to gain preparation for employment, clinical practice or post baccalaureate education. However, a university education is more than that, it involves the transformation of individuals from students to scholars, from receivers of knowledge to creators of new knowledge, from professional prospects to professional colleagues. The university graduate carries away more than a just a paper diploma or certificate, you will carry a breadth and depth of learning that goes beyond a particular career choice. It is your development of a lifelong commitment to learning, of an appreciation and understanding of differing ideas and ideologies, and your continued development as an individual and professional, that empowers you as a citizen, prepares you for professional service, and opens your world to new possibilities. The Personal Approach to education at LSSU centers on personal contact and I encourage you to stop by my office, or that of any of the faculty members, to discuss your career interests in more detail. I look forward to meeting you."

--David M. Myton, PhD
Professor of Chemistry

Alternative Management of Anaerobic Landfill Bioreactors for Improved Energy Potential

Josh Kuzimski

Converting municipal solid waste to usable energy is an emergent and growing method for modern waste management. Through microbial facilitation of methanogenesis, methane gas can be extracted from landfill bioreactors to yield a significant amount of usable energy. The hypothesis was that a sufficient addition of sodium acetate to a controlled bioreactor environment would promote larger growth of methanogenic microbes and subsequently promote a greater amount of methane relative to a control (Madigan et al, 2003). In order to simulate an anaerobic bioreactor environment, the method for the study took place in modular sections to cover the design, construction and operation of laboratory scale bioreactors. Upon completion of bioreactor engineering, the biological and chemical components were scrutinized to match ideal conditions of a landfill. Methanosarcina was the chosen genus of the methanogen family to seed the bioreactors, and a total elemental analysis of the waste source was analyzed to approximate methane yield. Over 557 hours, each bioreactor produced approximately 1.3 liters of biogas with less than 1% containing methane. Given analysis through gas chromatography, the bioreactors may have had stunted methane production do to presence of argon gas in the headspace and/or low C/N ratio of the waste. The presence of argon should have been replaced with nitrogen, and the waste source should have contained more carbon per nitrogen. The generation-3 design of constructed bioreactors was successful in containing all gasses, liquids, and solids internally, however did not produce enough methane biogas to accept or reject the hypothesis.

Apply Today!

Home » Chemistry > Scholarships
Share this page with your friends: